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Abstract-A theory is presented which predicts heat transfer in the wake region of a cylinder in crossflow. 
The equations of Hiemenz describing laminar flow in the region of a stagnation point are modified to 
include an “apparent viscosity” term. The “apparent viscosity” is then related to the turbulent energy 
at the edge of the boundary layer in the wake by considering the laws of diffusion, dissipation and 
generation of turbulence. The solution of the equations, and the evaluation of the empirical constants 
introduced into the equations, is obtained by means of an analogue computer. 

The theory is compared with experimental data and is in good agreement for a freestream Reynolds 
number and turbulence intensity range 5 x lo3 < Re, < 3.5 x 10“ and 0.7 per cent < Tu, -C 10 per cent. 
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NOMENCLATURE 

freestream Reynolds number; 
Nusselt number; 
turbulence intensity; 

x*,y*, coordinate parallel and normal to wall of 
cylinder; 

x> .v, [&/v)lx*~ [&/v)lY*; 
p t’* 1 1 mean velocity parallel and normal to wall of 

cylinder; 

ii, t;, ii*/J(av), C*/J(av); 

PT density; 

P*? static pressure; 

Pt P*b ; 
Pf? total head pressure; 

v, kinematic viscosity; 

vt> turbulent kinematic viscosity; 

T*, temperature; 

7-3 
T,*-T* 

T,*-T,*; 

4 
5. 
D’ 

D, cylinder diameter; 
-- 
U, V, mean velocity parallel and normal to wall at 

edge of boundary layer; 
4(y), F(y), functions in equations (9), (10) and (11); 

0, Prandtl number; 

Of, turbulent Prandtl number; 

k, turbulent energy, i_{u” + u” + w”} ; 
LP 2 I2 

,u ,M’ 3 mean squared fluctuating velocity 
components; 

V shear stress in equation (16); 

a, b, constants in equation (17); 

I,, b, functions in equation (18); 

c,, C,, Ok,tr constants in equation (18); 

k’i2y* 

R, -. 
v ’ 

R 
k;12y.$ 

osc, -’ 
v ’ 

u, iP/iiE; 

K klk, ; 
AI, A2, A3, B, constants in equation (21); 

N, function in equation (21); 

e, constant in equation (22). 

Superscript 

*, having dimensions. 

Subscript 

G, condition at edge of boundary layer; 

W, condition at wall. 

1. INTRODUCTION 

THERE is no theory currently available which can 
adequately predict local heat transfer in the wake 
region of bluff bodies and in particular in the wakes 
of cylinders in crossflow. Although there is a large 
amount of heat-transfer data available for such regions 
a large variation has been shown to exist. Richardson 
[l] has devised an empirical relationship covering a 
range of data and this appears to follow an Rez3 
relationship. Some of the discrepancies may be 
accounted for by the effect of freestream turbulence 
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intensity and scale as demonstrated by Zijnen [2] and 
which have also been confirmed by Petrie and Simpson 
[3]. A comparison of any theory with experimental 
data is therefore difIicult. The main difficulty lies in the 
basic lack of understanding of the fluid mechanics of 
this region since the flow is characteristically unstable 
and the problem is likely to be a three dimensional 
one although simplification to a two dimensional case 
is often assumed. It is on this basis that mathematical 
models to include the intensity and scale of turbulence 
are usually derived. 

One attempt has been made to predict heat transfer 
in such a region by Leontev and Riagen [4] by 
extending the analytical methods of boundary-layer 
theory. It is assumed that the surface of the cylinder 
is wetted by a relatively stable turbulent return flow 
and that there is a growth of a layer starting at the 
rear stagnation point which obeys ~undary-layer 
theory. By considering the steady, incompressible con- 
served property equation and empirical relationships 
between Stanton number and thermal boundary-layer 
thickness, equations for local Nusselt number around 
the wall have been derived for the case of constant 
surface heat flux and constant temperature surface. 
Both are dependent upon a freestream Reynolds num- 
ber factor raised to the half power which is in contra- 
diction to some of the experimental evidence. Since the 
region of interest is characteristically one of large 
fluctuations rather than large velocities the exclusion 
of this fact in any theory suggests it to be inadequate. 

To relate the fluctuating fluid motion to the heat 
transfer in separated flows it is necessary to investigate 
the decay of turbulence in the region of the wall. 
Spalding [5] has considered this problem on a one 
dimensional basis and has derived a power law relation- 
ship between the Stanton number and Reynolds num- 
ber expressing the law of heat transfer for a wall 
adjacent to a region of separated flow. The derivation 
is based on Prandtl’s proposals for the laws of dissi- 
pation, diffusion and generation of turbulent kinetic 
energy. One of the characteristic features of separated 
flows is that the locations of maximum shear stress 
are remote from the wall. The turbulence which is 
generated in the remote high shear region of a separated 
flow must be conveyed to the vicinity of the wall by 
the action of convection and diffusion; the turbulence 
intensity near the wall which is a main determinant 
of heat transfer, is governed by the interaction of these 
two factors together with turbulence dissipation. By 
relying heavily on experimental data for flow in a 
separated region a law is derived in the form which 
shows a dependence of Nusselt number to the Reynolds 
number to the 0.6 power. 

A recent publication by Petrie and Simpson [3] 
provides the results of an experimental study of the 

effect of mainstream turbulence on heat transfer from 
a cylinder in crossflow, with particular attention being 
paid to the wake region of the cylinder. The data are 
obtained in the ranges 5 x lo3 < Re,, < 3.5 x 104 and 
0.7 per cent < 7% < 10 per cent. Using an electrically 
heated constant heat flux cylinder and measuring local 
heat transfer, improvements up to 100 per cent in the 
wake region were realised. A single wire probe was 
used to study the flow in this region, mean and 
~uctuating components of velocity normal to and 
around the wall being measured. Weak gradients of 
pressure, temperature and velocities around the wall 
were found to exist for k40” from the rear stagnation 
point and the boundary-layer thickness was also appar- 
ently constant in this region. By using the RMS 
fluctuating velocity component as a measure of the 
turbulent kinetic energy a correlation between Nusselt 
number and turbulent energy was obtained. All the 
experimental data are presented in Figs. 2, 3 and 4. 

By using the relationships between shear stress and 
turbulent energy similar to those discussed by Spalding 
[.5], a mathematica1 relationship is derived to predict 
heat transfer in the wake region which compares 
favourably with the experimental measurements. An 
analogue computer facility has been used to solve the 
equation set and the empirical constants occurring in 
the equations are evaluated using the fluid mechanics 
experimental data. 

2. THE PREDICTION OF HEAT TRANSFER 

2.1. ~orrnul~ti~n qf equations 

From the available experimental data, several sim- 
plifying assumptions may be made to assist in the 
prediction of heat transfer from the fluid mechanics. 
Because of the weak gradients around the wall in the 
region of the rear stagnation point, it was considered 
sufficient at this stage to derive a relationship for 
conditions at the rear stagnation point. The steady 
Sow solution at a stagnation point has already been 
solved by Hiemenz for laminar flow [S]. By modifying 
his equations to include the effect the turbulence in 
the form of an apparent viscosity term and by con- 
sidering this term as a function of the turbulent kinetic 
energy it is then possible to relate the variation of 
viscosity to the diffusion, dissipation and generation 
of turbulence near the wall. 

As is common practice the fluctuating stress terms 
in the Navier-Stokes equations can be lumped together 
into an “apparent” or eddy viscosity term and the 
equations can then be written in the form 

&i* &?2* 
u*_-+ij*- 

?x* iiL’* 
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(11) may be solved simultaneously to obtain tem- 
perature profiles. For the case of laminar flow these 

= -fg+& (v+v)d’i* +L (v+v)E (2) 
[ ’ a~*] a~*[ t ay*] 

equations reduce to the familiar form derived by 
Hiemenz. 

a7-* aT* 
@“+C#N$“-#‘z+. 1 = 0 (12) 

E’G+t’*dq’* I$“‘-(b#“+$F’= 0 (13) 

T”+a#T’ = 0. (14) 

2.2. Turbulent energy equation 

where the * indicates having dimensions. Most present day methods involving calculations 

The equations can then be written in a non- with turbulence assume that the shear stress at a point 

dimensional form using the same groups as Hiemenz, is dependent upon the mean velocity gradient at that 

that is, point. It has been shown by Bradshaw [7] however, 
that there is a much closer connection between the 

x = [J(a/$lx*, u* = [J(av)]ii, 
T,*-T* 

T = ~ 
shear stress and the parameters which describe the 

T$-T, turbulence structure, the latter being governed by the 

y = [J(a/V)]y*, t?* = [J(uv,]a, 5 = .v$ 

(4) turbulent kinetic energy equation. One form of this 
equation is based on Prandtl’s proposals for the laws 
of dissipation, generation and diffusion of turbulence. 

where a = 4DJD = a reciprocal time constant. By defining the turbulent kinetic energy k as 

In frictionless potential flow the velocity distribution - 

in the neighbourhood of the stagnation point is given by 
k = ~{u”+~+w’~} (15) 

U = ax, V= -ay (9 
these relationships are then written as 

and if ps denotes the stagnation pressure and p the 
Rate of dissipation per unit volume 

pressure at any arbitrary point then 
,l+ 

p.: - p* = :pa2(x2 + y2). 
=apT 

(6) Y 

For laminar flow it is assumed that 

ii = xc$Q); r? = -&yf (71 

where the prime denotes differentiation with respect 
to y. Thus 

g-p* = i_a2p(x2+F(y)) (8) 

where 4(y) and F(y) are both functions of y. 
By non-dimensionalising equations (l), (2), (3) and 

where 

substituting expressions (7) and (8) into these equations r dii* 

we have -= V*V1 P 
vt = ckii2y*. 

a$-b$(kif2y*~)-~_~=0. (17) 

Based upon the available experimental evidence [3] 
that the turbulent energy gradients are weak around 
the wall, convection terms have been neglected. It is 
now required to relate the decay of turbulence in this 

The corresponding boundary conditions are then region to that in the viscous region close to the wall. 

y=O: #=O, d’=O, F=O, T=l 
This is hampered by lack of knowledge and experi- 

y = co : 4’ = 1, 4” = 0, T = 0. 
mental data in such a region and one has to rely on 
many empirical relationships. In order to have one 

Since equations (9) and (10) are uncoupled, if the equation which describes the decay of turbulence in 
pressure distribution is not reauired. eauations (91 and ,I_~ 

I I1 \ , both regions, Wolfshtein [6] has modified equation (I 11 

Rate of generation per unit volume 

dG* 
=rdy* 

Rate of diffusion into unit volume 

(16) 

Thus in a turbulent region 
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to include two exponential terms I, and ID which are 
claimed to be valid in the viscous layer in the wall. 

Although this may not be of high accuracy it does 
simplify the solution procedure and is likely to be 

adequate for the present task. Equation (17) then 
becomes 

where v = c k’i21 f 

l,, -_ ;:(I _;-W, 

ID = y*(l _e-A~R); R _ kl’:l’* 

(18) 

The most convenient way of non-dimensionalising this 
equation is to consider the boundary-layer thickness 
and the velocity and turbulence levels at the edge of 
the boundary layer thus, 

Equation (18) is then written as 

khi2 y; CDK312 0 

----‘rl(l_e-.hR)= V 

v, ka2y; 
-= 
V 

-. ~,,K”~~(l-e-~~~); 
V 

R = W2yr; 
v K112t/. 

09) 

(20) 

The equations which now require simultaneous solu- 
tions can be simplified to 

+BN[4,“]2 _ CDK3’2 
rl(l _e-hR) = 

0 

$[(1+~~~)~“]+~g’.-g”tl =o 

;[(I+A,N)T’]+c+T =0 

where 

N = K”2q(l -e-AIlR); 
ka2y$ 

R,,, = __ 
v 

A1=C’l; q&lsc 
AZ=-------; 

ck.1 OT 

A3 = c,&sc; 

(21) 

The facilities available indicated that the most em- 

cient way to obtain a solution was by means of an 
analogue computer. 

Before attempting a solution two slight modifications 

to the equations are necessary. Firstly. the non- 
dimensional procedure used by Hiemenz does not 
provide a suitable measure of the boundary-layer 

thickness and therefore y is modified to be compatible 
with q thus 

(22) 

Secondly, because of a computing technique, it is 
necessary to start the simultaneous solution of equa- 
tions (21) at q = 1, that is, at the edge of the boundary 
layer and therefore a new independent variable is 
necessary which is a function of J’ 

n+!p+y, 

E 

Thus 

d 1 d 

G= -s’G 

and 

d2 1 d” 
2=- - 
drl &“dn” 

The final equations are then 

CDK3’2 

(l-n)(l-e-DK”‘II-n)) 

-I?[&‘]’ dn (c) 
I 

N = K”2(l_n)(1-e-EK”,l-~,) 

E = A,&,,; D = AD& 

with the following boundary conditions 

(23) 

?y =o: K=O; c&=0; &=O; T,=l 

‘I= 1: K=l; &,zl; T,zOo. 

An iterative procedure is necessary to solve equations 

(23a) and (23b). This is effected by adjusting the initial 
gradient of each equation to satisfy all boundary con- 
ditions. Initial tests proved that the turbulence gener- 
ation term had little effect on the solution of the 
turbulent energy equation thus simplifying the solution 
procedure. An investigation of the effect of the exponen- 
tial terms I,,, ID indicated that for the range of other 
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constants involved the numerical values of E and D 
made little difference to the solution and therefore 
both constants were fixed at 0.5. 

The experimental data has indicated that the tem- 
perature gradient around the wall dT/dO at the rear 
stagnation point is weak and therefore the assumption 
of constant temperature is valid. Thus 

AT dT 
qw=w-- - 

0 YE drl t,=o 

where 

Thus 

AT = T,--T,. 

It was then a simple matter after allowing for these 
simplifications to evaluate the temperature gradient at 
the wall and hence the local heat transfer. 

3. RESULTS AND DISCUSSION 

It was necessary to compare the accuracy of the 
solution procedure by comparing the results with 
known solutions. This was done satisfactorily for the 
special case of v, = 0, that is for laminar flow, with the 
numerical solution of Hiemenz. A comparison of the 
velocity gradient at the wall, was as follows : 

Present solution 4&O = 1.227 

Hiemenz solution 4tZo = 1.233. 

The difference of 0.5 per cent was considered extremely 
good and certainly sufficiently accurate for the present 
analysis. The laminar flow solutions are shown in Fig. 1. 

Several constants occur in the equation set which can 
be adjusted to fit the theory to the experimental data. 

FIG. 1. Solutions of equations for laminar boundary-layer FIG. 2. Prediction of heat transfer at rear stagnation point: 
case (Hiemenz solution). a comparison with experimental data. 

Since it is desirable to choose a group of constants 
which are generally applicable to a number of fluid 
flow problems, it was decided to use initially the same 
group as Wolfshtein [6] which were based on a tur- 
bulent boundary layer on a flat plate. These were as 
follows : 

c, = 0.22 CD = 0.416 uk,, = 1.53 

A,, = 0.016 A, = 0.263 rJT = 0,9. 

A laminar Prandtl number of 0.7 was used throughout 
and an initial value of E = 2.0 was chosen based on 
the laminar value at a stagnation point (Hiemenz 
solution). 

Not surprisingly this group was unsuitable and 
several alterations were required. The solutions were 
not strongly dependent upon I, and ID and therefore 
the constants A,, and AD were retained at the above 
values. Agreement between theory and experiment was 
obtained by reducing or but this was considered un- 
reasonable since values less than the ldminar value of 
0.7 were required, therefore cr, was retained at 0.9. The 
turbulent energy within the boundary layer is depen- 
dent largely upon the diffusion into the layer. It seems 
reasonable to expect this to be a function of the 
maximum turbulent energy, in this case located at the 
edge of the boundary layer. Alteration of the constant 
c, in the diffusion term of equation (21a) to become 
a variable, c, = f(R,,,), resulted in a theoretical re- 
lationship between Nusselt number and turbulent 
energy which is in reasonably good agreement with the 
experimental data, a comparison being made in Fig. 2. 
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A simple power law relationship for this new variable 
was found to be adequate. The best fit being produced 

by 

The alteration of the diffusion term to include the effect 
of the maximum turbulent energy is in agreement with 

the work of Bradshaw [7]. 

06 

t 

0 2-63 

x 
p 

5.78 

. 6-05 

FIG. 3. Non-dimensional fluctuating velocity profile at rear 
stagnation point: a comparison with experimental data. 

0 0.675 

3 2-63 

x 5.76 

. 605 

FIG. 4. A comparison of theoretical and experimental mean 
velocity profiles for E = 3.0. 

Once the value of c,, is established the remaining 

constants can be adjusted accordingly. Examination of 
the equation (21a) shows that there is no need to alter 
ok,f and CD. CD was therefore chosen and reduced to 

0.135 which gave the best agreement for the RMS 
fluctuating velocity profiles. Because of the amount of 
scatter of experimental data due to freestream tur- 
bulence effects, the range of k%‘2yz/v to include 
this scatter is indicated in Fig. 3. This range, 
0 < k$‘yE/v < 250 is within that measured by experi- 
ment. Finally, by increasing E = 3.0, implying a reduc- 
tion in the thickness of the boundary layer a satisfactory 
agreement is indicated in Fig. 4 was obtained between 
the predicted and measured mean velocity profiles. 

While there is still a heavy reliance upon experi- 

mental data, which will remain necessary until there is 
a better understanding of the fluid mechanics of this 

region, the theory provides a general framework on 
which to examine the fluid mechanic parameters most 

likely to affect the heat transfer. 

CONCLUSIONS 

1. The mathematical model chosen to predict the 
heat transfer in the wake region of a cylinder is satis- 
factory so far as can be determined in the light of 

available experimental data. 
2. On the basis of the available information the most 

suitable constants to be used in the equation set are: 

c, = 0.135 rsk,, = 1.53 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

E = 3.0 A,, = 0.016; AD = 0.263; o1 = 0.9. 
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PREVISION DU TRANSFERT THERMIQUE DANS LE SILLAGE 
DE CYLINDRE EN ATTAQUE FRONTALE 

Resume-On presente une theorie qui donne le transfert thermique dans la region de sillage d’un 
cylindre en attaque frontale. Les equations de Hiemen qui decrivent t’ecoulement Iaminaire dam la 
region du point d’arret, sont modifiees pour inclure un terme de “viscosite apparente”. La “viscosite 
apparente” est reliee a l’bnergie turbulente a la front&e de la couche limite dam le sillage en considerant 
les lois de la diffusion, de la dissipation et de la generation de la turbulence. La solution des equations 
et l’evaluation des constantes empiriques introduites dam les equations sont obtenues au moyen d’un 
calcuiateur analytique. 

La theorie est comparie avec les resultats experimentaux et I’accord est bon pour un nombre de Reynolds 
tel que 5 x lo3 < Re, < 3,5 x lo4 et une intensite de turbulence 0,7 pour cent i Tu, < 10 pour cent. 
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DIE VORAUSBESTIMMUNG DES WARMEUBERGANGS IN DEN 
ABLGSEWIRBELN QUERANGESTROMTER ZYLINDER 

Zu~~~f~ung-Es wird eine Theorie angegeben, mit der der W~rme~bergang im Totwassergebiet 
eines querangestriimten Zylinders vorausberechnet werden kann. Durch Einfiihren eines “Scheinvis- 
kositlts”-Terms wurden die Gleichungen von Hiemenz, die die laminare Stromung im Bereich des 
Satupunkts beschreiben, modifiziert. Die “Scheinviskositlt” wird dann mit der Turbulenzenergie am 
Rand der Grenzschicht im Wirbelgebiet unter Beriicksichtigung der GesetzmLDigkeiten der Diffusion, 
der Dissipation und der Erzeugung von Turbulenz verkniipft. Die Losung der Gleichungen und die 
Bestimmung der empirischen Konstanten in den Gleichungen werden mit einem Analogrechner durch- 
gefiihrt. Die Theorie stimmt mit experimentellen Ergebnissen fur Freistrom-Reynolds-Zahlen zwischen 

5 x lo3 i Re, <: 3,5 x 10“ und Turbulenzgrade zwischen 0,7x < Tu, < 10% gut iiberein. 

PACHiiT HEPEHOCA TEHJIA B CJ-lEjJE HHJ-IHHJJPOB l-IPM IIOIIEPEYHOM 
06TEKAHHH 

A~o~~~ - Ilpemoxem reopwa, ~03ao~amma~ paccrwrarb neperfoc Terma n cnene nonepemo 
06TeKaeMOrO mfnrrenpa. B ypaatretriie XirMenua, omicbrsaromee nabfrrriaprioe TepeHEI(: B O~JI~CTE 
KpHTWieCKOti TOYKH, BBeAeHa ((KaXQ'ru;WIC% BRSKOCTLD. c(Kaxy~~~anca BR3KOCTb)) 3aTeM CBR3bIBaeTC)I 
c TypGynettrrioR 3Hepruett Ha BHemaei4 rpaHaue norpaHsiwor0 cn011 B cnene H nonomweTcx 3a~o- 
HaMK n~@r&y3riri, mioxnaumi w reuepspoaamia ryp6ynerirnocnr. Pememie ~THX ypamienti H 
O~~~e~eH~e3M~~~~~~KilXKOHCTaHTB~~aBHeHW)IXBbI~O~eHbICIIOMO~b~8A~OrOBO#~I. 
CpaBHeHHeTeOpeTHiieCKifXAaHHbiXC 3KC~ep~MeHT~bHblM~~3y~Ta~~o6~ap~~eTXOpO~~ 
cornacwe JUIR 3HaseHaR wcna FWhonbnca ceo6onHoro TeYemiIf 5 X 103<Re,<3,5 x lo4 B 

xuarIa30He A3MeHeHUR WHTeHCHBHOCTH Typ6yJIeHTHOCTH0,7%< Tu,< 10%. 


